Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental and Computational Assessment of Inlet Swirl Effects on a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2014-04-01
2014-01-1299
The light-medium load operating regime (4-8 bar net IMEP) presents many challenges for advanced low temperature combustion strategies (e.g. HCCI, PPC) in light-duty, high speed engines. In this operating regime, lean global equivalence ratios (Φ<0.4) present challenges with respect to autoignition of gasoline-like fuels. Considering this intake temperature sensitivity, the objective of this work was to investigate, both experimentally and computationally, gasoline compression ignition (GCI) combustion operating sensitivity to inlet swirl ratio (Rs) variations when using a single fuel (87-octane gasoline) in a 0.475-liter single-cylinder engine based on a production GM 1.9-liter high speed diesel engine. For the first part of this investigation, an experimental matrix was developed to determine how changing inlet swirl affected GCI operation at various fixed load and engine speed operating conditions (4 and 8 bar net IMEP; 1300 and 2000 RPM).
Journal Article

Experimental Investigation of Transient Response and Turbocharger Coupling for High and Low Pressure EGR Systems

2014-04-01
2014-01-1367
The transient response of an engine with both High Pressure (HP) and Low Pressure (LP) EGR loops was compared by conducting step changes in EGR fraction at a constant engine speed and load. The HP EGR loop performance was shown to be closely linked to turbocharger performance, whereas the LP EGR loop was relatively independent of turbocharger performance and vice versa. The same experiment was repeated with the variable geometry turbine vanes completely open to reduce turbocharger action and achieve similar EGR rate changes with the HP and LP EGR loops. Under these conditions, the increased loop volume of the LP EGR loop prolonged the response of intake O2 concentration following the change in air-fuel ratio. The prolonged change of intake O2 concentration caused emissions to require more time to reach steady state as well. Strong coupling between the HP EGR loop and turbochargers was again observed using a hybrid EGR strategy.
Technical Paper

Experimental Investigation of Light-Medium Load Operating Sensitivity in a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2013-04-08
2013-01-0896
The light-medium load operating range (4-7 bar net IMEP) presents many challenges for advanced low temperature combustion strategies utilizing low cetane fuels (specifically, 87-octane gasoline) in light-duty, high-speed engines. The overly lean overall air-fuel ratio (Φ≺0.4) sometimes requires unrealistically high inlet temperatures and/or high inlet boost conditions to initiate autoignition at engine speeds in excess of 1500 RPM. The objective of this work is to identify and quantify the effects of variation in input parameters on overall engine operation. Input parameters including inlet temperature, inlet pressure, injection timing/duration, injection pressure, and engine speed were varied in a ~0.5L single-cylinder engine based on a production General Motors 1.9L 4-cylinder high-speed diesel engine.
Technical Paper

Experimental Investigation into the Effects of Direct Fuel Injection During the Negative Valve Overlap Period in an Gasoline Fueled HCCI Engine

2007-04-16
2007-01-0219
A single cylinder Yamaha research engine was operated with gasoline HCCI combustion using negative valve overlap (NVO). The injection strategy for this study involved using fuel injected directly into the cylinder during the NVO period (pre-DI) along with a secondary injection either in the intake port (PI) or directly into the cylinder (DI). The effects of timing of the pre-DI injection along with the percent of fuel injected during the pre-DI injection were studied in two sets of experiments using secondary PI and DI injections in separate experiments. Results have shown that by varying the pre-DI timing and pre-DI percent the main HCCI combustion timing can be influenced as a result of varied heat release during the negative valve overlap period along with hypothesized varied degrees of reformation of the pre-DI injected fuel. In addition to varying the main combustion timing the ISFC, emissions and combustion stability are all influenced by changes in pre-DI timing and percent.
Technical Paper

Expanding the HCCI Operation With the Charge Stratification

2004-03-08
2004-01-1756
A single cylinder CFR research engine has been run in HCCI combustion mode at the rich and the lean limits of the homogeneous charge operating range. To achieve a variation of the degree of charge stratification, two GDI injectors were installed: one was used for generating a homogeneous mixture in the intake system, and the other was mounted directly into the side of the combustion chamber. At the lean limit of the operating range, stratification showed a tremendous improvement in IMEP and emissions. At the rich limit, however, the stratification was limited by the high-pressure rise rate and high CO and NOx emissions. In this experiment the location of the DI injector was in such a position that the operating range that could be investigated was limited due to liquid fuel impingement onto the piston and liner.
Technical Paper

Ethanol Fumigation of a Turbocharged Diesel Engine

1981-04-01
810680
Ethanol has been injected through an atomizing nozzle into the intake manifold of a four cylinder turbocharged diesel engine. It was found that to avoid liquid droplet impingement on the compressor blades the injector needed to be located downstream of the compressor, in the high pressure section of the inlet manifold. 160 proof and 200 proof alcohols were investigated with a series of percentage substitutions at different speeds and loads. The fumigation of ethanol resulted in a slight improvement in thermal efficiency at high loads and a small reduction at light loads. The ignition delay and rate of pressure rise also increased significantly when ethanol was added to the engine. A change in the proof of ethanol from 160 to 200 did not produce any noticeable change in engine performance. Emission measurements were also made and are discussed. The problem of obtaining uniform cylinder to cylinder distribution of alcohol has been encountered.
Technical Paper

Effects of Oxygen Enhancement on the Emissions from a DI Diesel via Manipulation of Fuels and Combustion Chamber Gas Composition

2000-03-06
2000-01-0512
Oxygen enhancement in a direct injection (DI) diesel engine was studied to investigate the potential for particulate matter and NOx emissions control. The local oxygen concentration within the fuel plume was modified by oxygen enrichment of the intake air and by oxygenating the base fuel with 20% methyl t-butyl ether (MTBE). The study collected overall engine performance and engine-out emissions data as well as in-cylinder two-color measurements at 25% and 75% loads over a range of injection timings. The study found oxygen enhancement, whether it be from intake air enrichment or via oxygenated fuels, reduces particulate matter, the effectiveness depending on the local concentration of oxygen in the fuel plume. Since NOx emissions depend strongly on the temperature and oxygen concentration throughout the bulk cylinder gas, the global thermal and dilution effects from oxygen enrichment were greater than that from operation on oxygenated fuel.
Technical Paper

Effects of Low Pressure EGR on Transient Air System Performance and Emissions for Low Temperature Diesel Combustion

2011-09-11
2011-24-0062
Low pressure EGR offers greater effectiveness and flexibility for turbocharging and improved heat transfer compared to high pressure EGR systems. These characteristics have been shown to provide potential for further NOx, soot, and fuel consumption reductions in modern diesel engines. One of the drawbacks is reduced transient response capability due to the long EGR path. This can be largely mitigated by combining low pressure and high pressure loops in a hybrid EGR system, but the changes in transient response must be considered in the design of an effective control strategy. The effect of low pressure EGR on transient emissions was evaluated using two different combustion strategies over a variety of transient events. Low pressure EGR was found to significantly lengthen the response time of intake oxygen concentration following a transient event, which can have a substantial effect on emissions formation.
Technical Paper

Effect of Injection Timing on Detailed Chemical Composition and Particulate Size Distributions of Diesel Exhaust

2003-05-19
2003-01-1794
An experimental study was carried out to investigate the effects of fuel injection timing on detailed chemical composition and size distributions of diesel particulate matter (PM) and regulated gaseous emissions in a modern heavy-duty D.I. diesel engine. These measurements were made for two different diesel fuels: No. 2 diesel (Fuel A) and ultra low sulfur diesel (Fuel B). A single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system was used in the experiments. PM measurements were made with an enhanced full-dilution tunnel system at the Engine Research Center (ERC) of the University of Wisconsin-Madison (UW-Madison) [1, 2]. The engine was run under 2 selected modes (25% and 75% loads at 1200 rpm) of the California Air Resources Board (CARB) 8-mode test cycle.
Technical Paper

Effect of Fuel Composition on Combustion and Detailed Chemical/Physical Characteristics of Diesel Exhaust

2003-05-19
2003-01-1899
An experimental study was performed to investigate the effect of fuel composition on combustion, gaseous emissions, and detailed chemical composition and size distributions of diesel particulate matter (PM) in a modern heavy-duty diesel engine with the use of the enhanced full-dilution tunnel system of the Engine Research Center (ERC) of the UW-Madison. Detailed description of this system can be found in our previous reports [1,2]. The experiments were carried out on a single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system. The operating conditions of the engine followed the California Air Resources Board (CARB) 8-mode test cycle. The fuels used in the current study include baseline No. 2 diesel (Fuel A: sulfur content = 352 ppm), ultra low sulfur diesel (Fuel B: sulfur content = 14 ppm), and Fisher-Tropsch (F-T) diesel (sulfur content = 0 ppm).
Technical Paper

Effect of Engine Operating Conditions on Particle-Phase Organic Compounds in Engine Exhaust of a Heavy-Duty Direct-Injection (D.I.) Diesel Engine

2003-03-03
2003-01-0342
Significant amounts of particle-phase organic compounds are present in the exhaust of diesel vehicles. It is believed that some of these compounds have a greater impact on human health and the environment than other compounds. Therefore, it is of significant importance to speciate particle-phase organic compounds of diesel particulate matter (PM) to clarify the effects of PM on human health and the environment, and to understand the mechanisms of organic compounds formation in PM. A dilution source sampling system was incorporated into the exhaust measurement system of a single-cylinder heavy-duty direct-injection (D.I.) diesel engine. This system was designed specifically to collect fine organic aerosols from diesel exhaust. The detailed system is described in Kweon et al. [27].
Technical Paper

Determination of Diesel Injector Nozzle Characteristics Using Two-Color Optical Pyrometry

2002-03-04
2002-01-0746
An investigation of several diesel injector nozzles that produced different engine emissions performance was performed. The nozzle styles used were two VCO type nozzles that were manufactured using two different techniques, and two mini-sac nozzles that provided comparison. Fired experiments were conducted on a Detroit Diesel Series 50 engine. Optical access was obtained by substituting a sapphire window for one exhaust valve. Under high speed, high load, retarded injection timing conditions, it was discovered that each nozzle produced different specific soot and NOx emissions. High-speed film images were obtained. It was discovered that the temperature and KL factor results from the 2-color optical pyrometry showed significant differences between the nozzles. The authors propose the possibility that differences in air entrainment, caused by potential differences in CD due to surface finish, may contribute to the variance in emissions performance.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process

2007-04-16
2007-01-0320
An experimental study was performed to investigate diesel particulate filter (DPF) performance during filtration with the use of real-time measurement equipment. Three operating conditions of a single-cylinder 2.3-liter D.I. heavy-duty diesel engine were selected to generate distinct types of diesel particulate matter (PM) in terms of chemical composition, concentration, and size distribution. Four substrates, with a range of geometric and physical parameters, were studied to observe the effect on filtration characteristics. Real-time filtration performance indicators such as pressure drop and filtration efficiency were investigated using real-time PM size distribution and a mass analyzer. Types of filtration efficiency included: mass-based, number-based, and fractional (based on particle diameter). In addition, time integrated measurements were taken with a Rupprecht & Patashnick Tapered Element Oscillating Microbalance (TEOM), Teflon and quartz filters.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and DPF Regeneration Behavior Measurements for Two Different Regeneration Systems

2007-04-16
2007-01-1063
Three distinct types of diesel particulate matter (PM) are generated in selected engine operating conditions of a single-cylinder heavy-duty diesel engine. The three types of PM are trapped using typical Cordierite diesel particulate filters (DPF) with different washcoat formulations and a commercial Silicon-Carbide DPF. Two systems, an external electric furnace and an in-situ burner, were used for regeneration. Furnace regeneration experiments allow the collected PM to be classified into two categories depending on oxidation mechanism: PM that is affected by the catalyst and PM that is oxidized by a purely thermal mechanism. The two PM categories prove to contribute differently to pressure drop and transient filtration efficiency during in-situ regeneration.
Technical Paper

Detailed Chemical Composition and Particle Size Assessment of Diesel Engine Exhaust

2002-10-21
2002-01-2670
A dilution source sampling system has been incorporated into the exhaust measurement system of a research single-cylinder diesel engine. To allow more detailed assessment of the individual chemical components of the diesel particulate matter (PM) the exhaust dilution system includes a residence time chamber (RTC) to allow for residence times of 30 to 60 seconds in the second stage of dilution before sampling. Samples are collected on a range of different filters where mass loading, elemental and organic carbon (ECOC), trace metals, sulfate ions (SO4), particle-phase organic compounds, and semi-volatile organic compounds are evaluated. In addition, particle size distributions have been determined using a scanning mobility particle sizer (SMPS). Results show that the chemical composition of the particulate matter is highly dependent on the engine operating conditions.
Technical Paper

Data from a Variable Rate Shape High Pressure Injection System Operating in an Engine Fed Constant Volume Combustion Chamber

1990-10-01
902082
In current systems, for a given nozzle and injection pressure (pump speed), the shape of the injection rate is fixed and the injection timing is the only variable the engine designer can vary. For this non-interactive injection system, changing the injector nozzle (number and diameter of holes) will proportionately change the injection shape. New injection systems in which the rate of injection is a controlled variable are being developed. Results from one such injector, called the UCORS (Universal Combustion Optimization and Rate Shaping), are reported in this paper. The system can dynamically control its injection rate shape by controlling the position and size of a pilot injection relative to the main injection. Data and analysis from an out-of-engine and combustion chamber study of the UCORS injection system are presented.
Technical Paper

Computations of a Two-Stroke Engine Cylinder and Port Scavenging Flows

1991-02-01
910672
A modification of the computational fluid dynamics code KIVA-II is presented that allows computations to be made in complex engine geometries. An example application is given in which three versions of KIVA-II are run simultaneously. Each version considers a separate block of the computational domain, and the blocks exchange boundary condition information with each other at their common interfaces. The use of separate blocks permits the connectedness of the overall computational domain to change with time. The scavenging flow in the cylinder, transfer pipes (ports), and exhaust pipe of a ported two-stroke engine with a moving piston was modeled in this way. Results are presented for three engine designs that differ only in the angle of their boost ports. The calculated flow fields and the resulting fuel distributions are shown to be markedly different with the different geometries.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Comparison of Numerical Results and Experimental Data on Emission Production Processes in a Diesel Engine

2001-03-05
2001-01-0656
Simulations of DI Diesel engine combustion have been performed using a modified KIVA-II package with a recently developed phenomenological soot model. The phenomenological soot model includes generic description of fuel pyrolysis, soot particle inception, coagulation, and surface growth and oxidation. The computational results are compared with experimental data from a Cummins N14 single cylinder test engine. Results of the simulations show acceptable agreement with experimental data in terms of cylinder pressure, rate of heat release, and engine-out NOx and soot emissions for a range of fuel injection timings considered. The numerical results are also post-processed to obtain time-resolved soot radiation intensity and compared with the experimental data analyzed using two-color optical pyrometry. The temperature magnitude and KL trends show favorable agreement.
X